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Abstract
The addition relation for the Riemann theta functions and for its limits, which
leads to the appearance of exponential functions in soliton type equations
is discussed. The form of addition property presented resolves itself to the
factorization of the N -tuple product of the shifted functions and it seems to
be useful for analysis of soliton type continuous and discrete processes in the
N + 1 space–time. A close relation with the natural generalization of bi- and
tri-linear operators into multiple linear operators concludes the paper.

PACS numbers: 05.45.Yv, 02.30.Jr, 02.30.Gp

1. Introduction

The main goal of this paper is the presentation of the role of the addition property (AP),
its relation to the famous bilinear operator formalism and its universality, since using the
AP, the quasi-periodic and soliton processes can be considered in an identical manner. The
generalization of the standard version of the AP to the version which can be linked with
multilinear operators is a constructive step in this direction. It seems that this generalized
version can be useful in the case of multi-dimensional soliton type problems.

There is an opinion that the huge success of the bilinear formalism in soliton theory can
be related to the AP for τ -functions which appear in the majority of soliton equations:

τ (z + w) τ (z − w) =
∑

ε

Wε (w) Zε (z) (1)

where z = κx + ωt ∈ Cg , ε ∈ Z
g

2 ; τ : Cg → C and Wε (w), Zε (z) : Cg × Zg → C.
The essential point here is the factorization of the right-hand side of (1), in which the

functions Wε and Zε depend on w and z, respectively and exclusively. There are a few
versions of the AP, according to scheme (1) [1–3], and the factorization appears in each one.
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10550 J A Zagrodziński and T Nikiciuk

In applications to the soliton type equations, the argument z usually depends on space and
time, while w plays the role of a fixed constant parameter. In a few papers [4] it was shown
that (1) allows one, in a straightforward manner, to determine derivatives of logarithms of
the τ -function, which are useful in the differential version of soliton type equations. For the
discrete soliton type equations the form (1) has a direct and immediate application.

As shown in the cited references, a class containing exponential functions as well as the
Riemann theta functions has just the AP according to (1).

In order to illustrate an application of the AP, we present below two examples: the discrete
Hirota equation and doubly discrete sine-Gordon equation (dd-sGe). In the limit, when the
step tends to zero, the first Hirota equation has a trivial limit, while the second one (dd-sGe)
becomes a standard sGe.

2. The Hirota equation

As an elementary example of the AP we present the system of dispersion equations for the
functional (discrete) equations

aτ (x + h, y, t) τ (x − h, y, t) + bτ (x, y + h, t) τ (x, y − h, t)

+cτ (x, y, t + h) τ (x, y, t − h) = Cτ 2 (x, y, t) (2)

where h is the step and a, b, c, C are constants. When C = 0 this equation is known as the
Hirota equation and then one can find its soliton solutions as in [5]. Quasiperiodic solutions
are reported in [6] and another class of solutions in [7]. In bilinear operator language (2) can
be written as

[a exp (hDx) + b exp(hDy) + c exp (hDt)] (τ ◦ τ) = Cτ 2 (3)

where the bilinear operator Dx (in the scalar version) is defined as

(Dx)
n (τ ◦ τ) : = (∂x − ∂x1)

nτ (x, y, t) τ (x1, y, t) |x1=x

= (∂s)
n [τ (x + s, y, t) τ (x − s, y, t)] |s=0. (4)

Assuming that the τ -function argument is z = kx + ly + wt ∈ Cg , equation (2) can be
rewritten as

aτ (z + kh) τ (z − kh) + bτ (z + lh) τ (z − lh) + cτ (z + wh) τ (z − wh) = Cτ 2 (z) (5)

which is just suitable for the application of the AP. We obtain the functional equation∑
ε∈Zg

2

[aWε (kh) + bWε (lh) + cWε (wh) − CWε (0)]Zε (z) = 0 (6)

which in the case of independent functions Zε (z), ε ∈ Z
g

2 leads to the system of algebraic
equations

aWε (kh) + bWε (lh) + cWε (wh) − CWε (0) = 0 for each ε ∈ Z
g

2 . (7)

For the fixed type of solution (which determines the class of functions Wε) and for a fixed step
h, equations (7) determine the relations between a, b, c, C and k, l,w. Thus the dispersion
equations (7) are valid for both soliton and quasiperiodic processes, and even for processes in
the form of solitons on the periodic background.

3. The discrete sine-Gordon equation

We consider the functional (discrete–discrete) version of the sine-Gordon equation (dd-sGe)
in the form

1

h2
sin

(
u++ + u−− − u+− − u−+

4

)
= sin

(
u++ + u−− + u+− + u−+

4

)
(8)
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where u±± := u (ξ ± h, τ ± h). It is obvious that in the limit h → 0 equation (8) becomes
the traditional sGe in light cone coordinates

u,ξτ = sin u. (9)

We look for the quasi-periodic solutions (8) in the form, which is identical (up to constant
parameters) with solutions of (9),

u (ξ, τ ) = 2i ln
θ(z + e/2|B)

θ (z|B)
(10)

where θ (z|B)denotes the Riemann theta function of argument z = kξ+uτ∈ Cg , parametrized
by the Riemannian matrix B∈ Cg×g; e = [1, . . . , 1]∈Zg , see e.g. [1, 4]. Moreover, in order
to obtain the real solutions we require θ

(
z + e

2 |B) = [θ (z|B)]∗.
Since

u (ξ + h, τ ± h) = 2i ln
θ (z + (k ± u) h + e/2|B)

θ(z + (k ± u) h|B)
= 2i ln

θ(z + w± + e/2|B)

θ(z + w±|B)
(11)

and similar relations hold for u (ξ − h, τ ± h), after simple manipulations we can rewrite (8)
in the form

θ (z + w−) θ (z − w−) − h2θ (z + w− + e/2) θ (z − w− + e/2)

θ (z + w+) θ (z − w+)

= θ (z + w− + e/2) θ (z − w− + e/2) − h2θ (z + w−) θ (z − w−)
θ (z + w+ + e/2) θ (z − w+ + e/2)

(12)

where w+ = (k + u) h, w− = (k − u) h. Let us assume that these quotients are constant
(= C + 1) for arbitrary z. Because of a general property θ (z + e/2) = θ (z − e/2), both
quotients lead to the same result:

θ (z + w−) θ (z − w−) − h2θ (z + w− + e/2) θ (z − w− + e/2)

= (C + 1) θ (z + w+) θ(z − w+). (13)

Now the AP can be applied. The Riemann theta functions do have the AP

θ (z + w|B) θ (z − w|B) =
∑
ε∈Zg

2

Wε (w) θ2
(
z +

ε

2

∣∣∣B) (14)

for z, w ∈ Cg . Wε coefficients can be expressed by theta-constants [4], but—and it is
important—do not depend on ξ and τ . Then equation (13) can be written as∑
ε∈Zg

2

Wε (w−) θ2
(
z +

ε

2

∣∣∣B)− h2
∑
ε∈Zg

2

Wε (w−) θ2
(
z +

(e + ε

2

)∣∣∣B)

= (C + 1)
∑
ε∈Zg

2

Wε (w+) θ
2
(
z +

ε

2

∣∣∣B) (15)

or as a simple functional equation∑
ε∈Zg

2

[Wε (w−) − h2We−ε (w−) − (C + 1)Wε (w+)]θ
2
(
z +

ε

2

∣∣∣B) = 0. (16)

Since θ2
(
z + ε

2 |B) labelled by ε ∈ Z
g

2 form a set of linearly independent functions, we
finally arrive at the requirement that for any ε ∈ Z

g

2

Wε (w−) − h2We−ε (w−) − (C + 1)Wε (w+) = 0. (17)

Equations (17) determine k and u, (andC) and these are linearly related to the propagation
vectors κ and angular frequencies ω in the laboratory coordinate system (z = κx + ωt).
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Therefore these equations represent a system of dispersion equations for the discussed dd-
sGe. Nontrivial solutions of (17) determine the solutions of the starting equation (8), but for
the higher g, since then the system is overdetermined, also some and even all elements of the
matrix B.

As (dd-sGe)→(sGe), with h → 0, (17) also tends to the dispersion equation for standard
sGe: ∑

i,j

kiujWε,ij + 1
2

(
δe,ε − cδε,0

) = 0. (18)

where Wε,ij := ∂2

∂wi∂wj
Wε (w) |w=0. In order to prove this statement one can substitute a

new constant c = −C/h2 and use the relations Wε (z) = Wε (−z), Wε (0) = δε,0, where δ

represents the Kronecker symbol.

4. Tri-linear operator

In order to extend direct methods in the spirit of the Hirota bilinear formalism to a broader
class of equations, the tri-linear operators T and T ∗ were introduced [8]:

(T )n (τ ◦ τ ◦ τ) := (
∂z + j∂w1 + j 2∂w2

)n
τ (z) τ (w1) τ (w2) |w2=w1=z (19)

(T ∗)n (τ ◦ τ ◦ τ) := (
∂z + j 2∂w1 + j∂w2

)n
τ (z) τ (w1) τ (w2) |w2=w1=z (20)

where j = exp (i2π/3).
In this language, for example, the fifth-order equation of the Lax hierarchy

u5x + 10uu3x + 20uxuxx + 30u2ux + ut = 0 (21)

although lacking a bilinear representation, can be written in tri-linear form [9](
7T 6

x + 20T 3
x T

∗3
x + 27TxTt

)
F ◦ F ◦ F = 0 (22)

where u = 2 (ln F)xx . The soliton solutions of this equation were also discussed in [10], and
we will return to this equation in the last paragraph of this paper. However, first let us try to
generalize the concept of bi- and tri-linear operators.

5. Multiple addition theorem for theta functions

One can introduce a multilinear (J -linear) operator by the relation

(T )n (τ ◦ · · · ◦ τ) :=
[(

∂z0 + j∂z1 + · · · + jJ−1∂zJ−1

)n J−1∏
i=0

τ (zi)

]
zJ−1=···=z1=z0=z

(23)

where j = exp (i2π/J ) and symbolically (τ ◦ · · · ◦ τ) = (τ◦)J .
We are convinced that the effectiveness of the bi- and tri-linear operators formalism

depends on the relevant AP of the functions to which this formalism is applied. Therefore,
the fundamental question is which class of functions has the multiple AP. Instead of the class
of exponential functions appearing in the solutions of soliton type equations we focus our
attention on the Riemann theta functions constituting a more general class of functions and
expressing the quasi-periodic solutions. Obviously, exponential functions can be considered
as the limiting case of the theta functions.

Following [1–4], we adopt the definition of the Riemann theta function as

θ (z|B) =
∑
n∈Zg

exp [iπ (2 〈z,n〉 + 〈n, Bn〉)] (24)
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where z ∈ Cg, B ∈ Cg×g is the Riemann matrix, (i.e. symmetric with a positively defined
imaginary part) and 〈z,n〉 := ∑g

j=1 zjnj .
If z,u(k) ∈ Cg , k = 0, . . . , J − 1, and

J−1∑
k=0

u(k) = 0 (25)

one can prove [11] that

θ
(
z + u(0)|B) θ(z + u(1)|B) θ(z + u(2)|B) · · · θ(z + u(J−1)|B)

=
∑
ε∈Z

g

J

Wε

(
u(0), . . . ,u(J−1)

)
Zε (z) (26)

where

Zε (z) = exp [iπ (2 〈z, ε〉 + 〈ε, Bε〉)] θ (Jz + Bε|JB) (27)

Wε

(
u(0), . . . ,u(J−1)

)

= exp
(
i2π〈u(0), ε〉) θ




u(0) − u(1) + Bε

u(0) − u(2) + Bε

· · ·
u(0) − u(J−1) + Bε

∣∣∣∣∣∣∣



2B B ·· B

B 2B ·· B

·· ·· 2B ··
B B ·· 2B




 . (28)

All theta functions are of order g, except that appearing in (28), which is of order (J − 1) g.
The sum in (26) is over ε ∈ Z

g

J , i.e. over g-dimensional vectors whose components are
0, 1, . . . , J − 1, and therefore the sum contains J g elements. Equation (26), written here for
theta functions, is a natural generalization of the AP (1). The same form has the generalized
AP for exponential functions defined by

E
(
z|B̃) =

∑
n∈Z

g

2

exp[iπ(2〈z,n〉 + 〈n, B̃n〉)] (29)

which appear in the solutions of standard soliton equations. (Observe that the difference
between (24) and (29) is only in the number of elements in the sum.) It is convenient to assume
that diagonal elements of matrix B̃ ∈ Cg×g are real. The constraint (25) can be eliminated
easily by introducing new parameters w(1), . . . ,w(J−1) instead of u(0),u(1), . . . ,u(J−1)

according to the relation

w(k) = 1

j − 1

(
u(k) − ju(k+1)

(
1 − δk,J−1

)− ju(1)δk,J−1
)

k = 1, . . . , J − 1 (30)

where δk,J−1 is the standard Kronecker symbol. Inversely

u(k) = j 1−k

(
jJ−1

k−1∑
m=1

jmw(m) +
J−1∑
m=1

jmw(m)

)
k = 1, . . . , J − 1 (31)

u(0) =
J−1∑
m=1

w(m). (32)

In table 1 below we present relations between u(p) and w(q) for J = 2–5.
Note that the choice of w parameters is not unique. The set adopted here gives a full

correspondence with tri-linear operators introduced earlier in soliton theory [8]. Since for
arbitrary integer, J , the sum

∑J−1
k=0 jk = 0, it is seen that the requirement (25) is fulfilled for

any set w(q).
As already mentioned, there exist several versions of the addition theorem for theta

functions. To our knowledge only one form [1,12] leads to the product of an arbitrary number
of shifted theta functions as in (26), but the right-hand side is essentially different and unusable
for our purposes.
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Table 1. The lowest derivatives of Wε(u
(1)) for u(1) = 0 and J = 2–5; see equations (34) and (35).

J = 2 3 4 5
j = −1 exp (i2π/3) i exp (i2π/5)

u(0) = w(1) w(1) + w(2) w(1) + w(2) + w(3) w(1) + w(2) + w(3) + w(4)

u(1) = jw(1) jw(1) + j2w(2) jw(1) + j2w(2) + j3w(3) jw(1) + j2w(2) + j3w(3) + j4w(4)

u(2) = — j2w(1) + jw(2) j3w(1) + jw(2) + j2w(3) j4w(1) + jw(2) + j2w(3) + j3w(4)

u(3) = — — j2w(1) + j3w(2) + jw(3) j3w(1) + j4w(2) + jw(3) + j2w(4)

u(4) = — — — j2w(1) + j3w(2) + j4w(3) + jw(4)

Table 2. The lowest derivatives ofWε(u
(1),u(2)) for u(1) = u(2) = 0 andJ = 2; see equations (34)

and (35).

J = 2

(Wε)u(i)α u
(i)
β

⇐⇒ Lαβ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ

⇐⇒ 4(3 × LαβLγδ + 2Lαβγ δ)

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(i)
ζ u

(i)
µ

⇐⇒ 8(15 × LαβLγδLζµ) + 4(15 × Lαβγ δLζµ) + 2Lαβγ δζµ

For fixed J (26) can be rewritten as

exp
J∑

j=1

[
ln θ

(
z + u(j)

)− ln θ (z)
] = [θ (z)]−J

∑
ε

Wε

(
u(1), . . . ,u(J−1)

)
Zε (z) . (33)

Differentiating (33) with respect to different components of vectors u(k) (k = 1, . . . ,
J − 1) we obtain

∂p+···+q(
∂u

(1)
α

)p · · · (∂u(l)
β

)q exp

[
J−1∑
k=0

ln θ
(
z + u(k)

)− J ln θ (z)

]

= [θ (z)]−J
∑
ε

[
∂p+···+q(

∂u
(1)
α

)p · · · (∂u(l)
β

)q Wε

(
u(1), . . . ,u(J−1)

)]
Zε (z) (34)

where j = exp (i2π/J ) and u(0) = ∑J−1
k=1 u(k). Now changing the derivatives with respect to

u(k) on the left-hand side into derivatives with respect to z, we can easily find the relationship
between the derivatives of logarithms of theta functions (with respect to z) and the derivatives
of Wε functions (with respect to u(k)). All relations become simpler if u(k) parameters are
chosen to be zero.

For u(0) = · · · = u(J−1) = 0 equation (34) can be written down in a more legible form,
convenient for applications:

Kαp,...,βq (ln θ (z)) =
∑
ε

Wε,αp,...,βq (0)
Zε (z)

[θ (z)]J
(35)

since the left-hand side of (34) reduces to combinations of the logarithm theta derivatives
Kαp,...,βq (ln θ (z)). Wε,αp,...,βq (0) denotes the derivatives of the W -function taken at the point
u(0) = · · · = u(J−1) = 0. In that manner relation (35) determines a correspondence between
derivatives of the W -function and logarithmic theta function derivatives: Wε,αp,...,βq (0) ⇐⇒
Kαp,...,βq (ln θ (z)).

As an example, the lowest nontrivial derivatives of Wε(u
(1)) and Wε(u

(1),u(2)),
respectively (at zero), up to fifth order are reported for J = 2, and 3 below in tables 2 and 3.
In the appendix we report the lowest nontrivial derivatives (up to sixth order) also for J = 6.
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Table 3. The lowest derivatives ofWε(u
(1),u(2)) for u(1) = u(2) = 0 andJ = 3; see equations (34)

and (35).

J = 3

(Wε)u(i)α u
(j)
β

⇐⇒ 2Lαβ i �= j

(Wε)u(i)α u
(i)
β

⇐⇒ Lαβ

(Wε)u(i)α u
(i)
β u

(j)
γ

⇐⇒ −Lαβγ i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ

⇐⇒ 4(3 × LαβLγδ + 2Lαβγ δ)

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ

⇐⇒ 2(3 × LαβLγδ + 2Lαβγ δ) i �= j

(Wε)u(i)α u
(i)
β u

(j)
γ u

(j)
δ

⇐⇒ 4LαβLγδ + 2 × Lαγ Lβδ + Lαβγ δ i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(j)
ζ

⇐⇒ −2(6 × LαβLγδζ ) − Lαβγ δζ i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(i)
ζ u

(i)
µ

⇐⇒ 8(15 × LαβLγδLζµ) + 4(15 × Lαβγ δLζµ)

+2Lαβγ δζµ
i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(i)
ζ u

(j)
µ

⇐⇒ 4(15 × LαβLγδLζµ)

+ 2(5 × Lαβγ δLζµ + 10 × LαβγµLδζ ) + Lαβγ δζµ
i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(j)
ζ u

(j)
µ

⇐⇒
8(3 × LαβLγδLζµ) + 12(2 × LαβLγζLδµ)

+ 4 × Lαβγ ζLδµ + 4 × LαβγµLδζ + 4Lαβγ δLζµ

+ 2(6 × LαβLγδζµ) + Lαβγ δζµ

i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ u

(j)
ζ u

(j)
µ

⇐⇒
4(9 × LαβLγδLζµ) + 6 × LαδLβξLγµ

+ 9 ×LαδLβγ ζµ + 2(6 ×LαβLγδζµ) + 9 ×LαβδLγ ζµ

+ Lαβγ δζµ

i �= j

The remaining derivatives of order less than six vanish. Lαβ := ∂zαzβ ln θ (z|B) |z=0 etc,
and here we adopted the shorthand notation which includes all possible permutations with
respect to identically underlined indices: e.g. 3 × LαβLγδ := LαβLγδ + LαγLβδ + LαδLβγ .

Some introductory applications of the above results can be found in [11].
The correspondence between the system of dispersion equations and bilinear operators

reported here is quite obvious. This affinity can be extended even further. For fixed J , let us
introduce a hierarchy of operators T (n) labelled by n = 0, 1, . . . , J − 1(

T (n)
)m

(τ◦)(J ) : = (
T (n)

)m
(τ ◦ · · · ◦ τ)

= (
T (n)

)m
[τ (z + u0) · · · τ (z + uJ−1)]|u0=···uJ−1=0 (36)

where

T (0) =
J−1∑
m=0

∂u(m) (37)

T (n) = ∂u(0) +
J−1∑

m=J−n+1

jm∂u(m+n−J ) +
J−n∑
m=1

jm∂u(m+n−1) 0 �= n < J (38)

and differentiation relates, of course, to the indicated components of u(m) vectors, i.e. u(m)
α .

For J = 2, 3, 4 we have table 4.
It is seen that for J = 2 and 3 we have the standard bi- and tri-linear operators, respectively.

However, for J > 3, the operator T (2) �= (T (1))∗, i.e. T (2) is not a complex conjugate to T (1).
For this reason the operators T (n) (n = 1, . . . , J − 1) for fixed J , will be called associated
operators. Operator T (0) is introduced here only for completeness.

Now, if the τ -function from (36) has the AP, the question arises how it reflects on the
Wε

(
w(1), . . . ,w(J−1)

)
functions?



10556 J A Zagrodziński and T Nikiciuk

Table 4. Operators T (n) for J = 2, 3, 4.

J = 2 J = 3 J = 4

T (0) = ∂u(0) + ∂u(1) ∂u(0) + ∂u(1) + ∂u(2) ∂u(0) + ∂u(1) + ∂u(2) + ∂u(3)

T (1) = ∂u(0) + j∂u(1) ∂u(0) + j∂u(1) + j2∂u(2) ∂u(0) + j∂u(1) + j2∂u(2) + j3∂u(3)

T (2) = — ∂u(0) + j2∂u(1) + j∂u(2) ∂u(0) + j3∂u(1) + j∂u(2) + j2∂u(3)

T (3) = — — ∂u(0) + j2∂u(1) + j3∂u(2) + j∂u(3)

Using (31) and (32) we have ∂u
(s)
α
/∂w

(p)
α

= j 1−s+p
(
1 +

(
jJ−1 − 1

)
δ0<p<s

)
and therefore

∂w
(p)
α

=
J−1∑
s=0

∂u
(s)
α

∂w
(p)
α

∂u
(s)
α

= ∂u
(0)
α

+ j 1+p
J−1∑
s=0

[
j−s

(
1 +

(
jJ−1 − 1

)
δ0<p<s

)]
∂u

(s)
α

= ∂u
(0)
α

+
J−1∑

m=J−n+1

jm∂u
(m+p−J )
α

+
J−p∑
m=1

jm∂u
(m+p−1)
α

= T (p)
α . (39)

This means that if the τ -function has the AP, multilinear operators according to (36)–(38)
reduce to the simple differentiation of the Wε

(
w(1), . . . ,w(J−1)

)
functions with respect to

their arguments. In the simplest cases of bi- and tri-linear operators this assertion allows one
to immediately write the system of dispersion equations on the basis of the bi- or tri-linear
approximations.

As an example, let us note the bi-linear form of the Korteweg–de Vries equation and the
tri-linear form of the reduction of the self-dual Yang–Mills equation:(

DxDt + D4
x

)
τ ◦ τ = 0 (40)(

T 4
x T

∗
z + 8T 3

x TzT
∗
x + 9T 2

x Tt

)
τ ◦ τ ◦ τ = 0 (41)

coincide with the relevant dispersion equation systems:∑
ij

κiωjWε,wiwj
+
∑
ijkl

κiκj κkκlWε,wiwjwkwl
= CWε (42)

∑
ijklm

(
κiκjκkκlλm − 8κiκjκkλlκm

)
Wε,wiwjwkwlvm + 9

∑
ijk

κiκjωkWε,wiwjwk
= CWε (43)

where we assumed that the arguments of τ -functions depend linearly on space and time:
zi = κix + ωit and zi = κix + λiy + ωit , respectively. Moreover, in the second equation
Wε = Wε

(
w(1),w(2)

) |w(1)=w(2)=0 depends on two vectors, designated for typographic reasons
as w and v. In both cases, C appears as the integration constant and for soliton solutions
it vanishes, while for the quasi-periodic solution it has to be determined as an additional
parameter. Finally, equations (42) and (43) should hold for any ε ∈ Z

g

J , i.e. the first one for
ε ∈ Z

g

2 and the second for ε ∈ Z
g

3 .
In conclusion, we expect that the generalized AP reported here might be useful for the

analysis of multi-dimensional soliton equations.
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Appendix

The lowest nontrivial derivatives (up to sixth order) of Wε

(
w(1), . . . ,w(5)

)
for J = 6 are

presented in table A1.
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Table A1. The lowest nontrivial derivatives (up to sixth order) of Wε

(
w(1), . . . ,w(5)

)
for J = 6.

(Wε)u(i)α u
(j)
β

2Lαβ i �= j

(Wε)u(i)α u
(i)
β

Lαβ

(Wε)u(i)α u
(i)
β u

(j)
γ

−Lαβγ i �= j

(Wε)u(i)α u
(j)
β u

(k)
γ

−Lαβγ i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ

4
(

3 × LαβLγδ + 2Lαβγ δ

)
(Wε)u(i)α u

(i)
β u

(i)
γ u

(j)
δ

2
(

3 × LαβLγδ + 2Lαβγ δ

)
i �= j

(Wε)u(i)α u
(i)
β u

(j)
γ u

(j)
δ

4LαβLγδ + 2 × Lαγ Lβδ + Lαβγ δ i �= j

(Wε)u(i)α u
(i)
β u

(j)
γ u

(k)
δ

2LαβLγδ + 2 × Lαγ Lβδ + Lαβγ δ i, j, k—different

(Wε)u(i)α u
(j)
β u

(k)
γ u

(l)
δ

3 × LαβLγδ + Lαβγ δ i, j, k, l—different

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(j)
ζ

−2
(

6 × LαβLγδζ

)
− Lαβγ δζ i �= j

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ u

(k)
ζ

−2
(

3 × LαβLγδζ

)
− 3 × LαδLβγ ζ

−3 × LαζLβγ δ − Lαβγ δζ

j �= i, k �= i

(Wε)u(i)α u
(i)
β u

(j)
γ u

(j)
δ u

(k)
ζ

−2
(
LαβLγδζ + LγδLαβζ

)− 2 × Lαγ Lβδζ

−2 × Lβγ Lαδζ − 4 × LαζLβδγ − Lαβγ δζ
j �= i, k �= i

(Wε)u(i)α u
(i)
β u

(j)
γ u

(k)
δ u

(l)
ζ

+3 ×
(
Lαγ δLβζ + Lβγ δLαζ − Lαβγ Lδζ

)
+2LαβLγδζ − Lαβγ δζ

i, j, k, l—different

(Wε)u(i)α u
(j)
β u

(k)
γ u

(l)
δ u

(m)
ζ

−10 × Lαβγ Lδζ − Lαβγ δζ i, j, k, l, m—different

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(i)
ζ u

(i)
µ

8
(

15 × LαβLγδLζµ

)
+ 4
(

15 × Lαβγ δLζµ

)
+ 2Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(i)
ζ u

(j)
µ

4
(

15 × LαβLγδLζµ

)
+ 2
(

5 × Lαβγ δLζµ + 10 × LαβγµLδζ

)
+Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(j)
ζ u

(j)
µ

8
(

3 × LαβLγδLζµ

)
+ 12

(
2 × LαβLγζLδµ

)
+ 4 × Lαβγ ζLδµ

+4 × LαβγµLδζ + 4Lαβγ δLζµ + 2
(

6 × LαβLγδζµ

)
+ Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ u

(j)
ζ u

(j)
µ

4
(

9 × LαβLγδLζµ

)
+ 6 × LαδLβξLγµ + 9 × LαδLβγ ζµ

+2
(

3 × LαβLγδζµ + 3 × Lαβγ δLζµ

)
+ 9 × LαβδLγ ζµ + Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(i)
δ u

(j)
ζ u

(k)
µ

4
(

3 × LαβLγδLζµ

)
+ 2
(

12 × LαβLγζLδµ

)
+ 8 × LαζLβγ δµ

+2
(

6 × LαβLγδζµ

)
+ 2Lαβγ δLζµ + 6 × LαβζLγ δµ + Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ u

(j)
ζ u

(k)
µ

6 × LαδLβζLγµ + 4
(

3 × LαβLδζLγµ

)
+ 2
(

6 × LαβLγδLζµ

)
+3 × Lαβδζ Lγµ + 6 × LαβδµLγ ζ + 2LγδLαβζµ + 2 × Lαβγ δLζµ

+2
(

3 × LαβLγδζµ

)
+ 6 × LαβδLγ ζµ + 3 × LαβµLγδζ + Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(i)
γ u

(j)
δ u

(k)
ζ u

(l)
µ

6 × LαδLβζLγµ + 2
(

9 × LαβLγδLζµ

)
+ 3 × Lαβγ δLζµ

+9 × Lαβδζ Lγµ + 2
(

3 × LαβLγδζµ

)
+ 8 × LαβδLγ ζµ + Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(j)
γ u

(j)
δ u

(k)
ζ u

(k)
µ

8LαβLγδLζµ + 2 ×
(
Lαγ LβδLζµ + LζαLµβLγδ + LγζLδµLαβ

)
8 × LαζLβγ Lδµ + 6 × Lαβγ Lδζµ + 2

(
3 × Lαβγ δLζµ

)
+12 × Lαβγ ζLδµ + 4 × Lαγ ζLβδµ + Lαβγ δζµ
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Table A1. (Continued.)

(Wε)u(i)α u
(i)
β u

(j)
γ u

(j)
δ u

(k)
ζ u

(l)
µ

4LαβLγδLζµ + 2
(

4 × LαβLγζLδµ

)
+ 10 × LαζLβγ Lδµ

+2
(

2 × LαβLγδζµ

)
+ 13 × Lαβγ ζLδµ + 6 × Lαβγ Lδζµ

+4 × Lαγ ζLβδµ + Lαβγ δζµ

(Wε)u(i)α u
(i)
β u

(j)
γ u

(k)
δ u

(l)
ζ u

(m)
µ

2
(

3 × LαβLγδLζµ

)
+ 12 × Lαγ LβδLζµ + 6 × Lαβγ δLζµ

+2LαβLγδζµ + 8 × Lαγ Lβδζµ

+4 × Lαβγ Lδζµ + 4 × Lαγ δLβζµ + Lαβγ δζµ
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